现代工程与应用科学学院朱嘉教授课题组在低成本锂基负极取得进展

现代工程与应用科学学院朱嘉教授课题组在对锂基负极的合成制备的研究中取得进展,该研究成果(Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes)于2016年10月26日在线发表在《Advanced Materials》上(DOI:10.1002/adma.201603755)。

现代工程与应用科学学院朱嘉教授课题组在低纯硅领域进一步取得进展,实现以低纯硅为原材料制备纳米级多孔硅颗粒,并成功应用在锂离子电池负极,该研究成果(Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes)发表在《纳米快报》(DOI: 10.1021/acs.nanolett.6b03567)。

随着电子便携设备及电动汽车的迅速发展,研究并开发高性能的锂电池材料尤为关键。就负极而言,锂和硅由于其极高的比容量成为了世界各研究组的研究重点。而对于金属锂负极,由于其在电化学循环中枝晶锂的生长从而导致循环寿命短,易引发短路甚至火灾爆炸等问题,阻碍了其商业化生产使用。过去的几十年来,很多纳米级结构保护层被提出来保护循环中的锂电极并且限制枝晶锂的生长,极大地改善了其性能,但是过于复杂的合成方法及较高的成本限制了其规模化的生产。

图片 1

朱嘉教授课题组首次着眼于常见的聚合物聚二甲基硅氧烷,通过简单的不同转速旋涂工艺控制膜厚及不同浓度酸处理控制孔洞大小分布,制备出多孔的PDMS 膜来保护锂电极,抑制了循环中直径锂的生长,极大地稳定了循环效率,提高了循环寿命;此外由于PDMS的化学惰性,其与目前研发出的各种电解液具有极好的兼容性;从原料到合成工艺具有极高的成本优势,为规模化制备生产提供了新的方向。

纳米多孔硅制备示意图

图片 2

众所周知,为了应对电子便携设备及电动汽车的发展需求,研究并发展高性能的锂离子电池尤为关键。而在锂离子电池的研究中,开发新的电极材料又成为提高电池性能的重中之重。就负极而言,硅因为其巨大的储量和超高的理论比容量(4200 mAh/g,相当于现在商业化石墨负极的十倍左右)成为了世界各研究组的研究重点,被认为是下一代最理想的负极材料之一。然而硅作为负极其问题也很严重,如在电池循环中,硅会经历4倍左右的体积膨胀变化从而导致电极容易粉碎化,电池失效等,所以限制了其性能的提高。

本文由美高梅4858官网发布于产品评测,转载请注明出处:现代工程与应用科学学院朱嘉教授课题组在低成本锂基负极取得进展

相关阅读